
This document is strictly confidential and intended solely for the recipients.

Introduction to Kubernetes
orchestration engine

(and how HPC can be inspired by a new generation scheduler)

Yiannis Georgiou - CTO Ryax Technologies

KubeCon 2018

Kubernetes Origins and Intro

● Initially developed by Google, inspired by Borg and Omega both
proprietary software used internally at Google.

● Google open-sourced Kubernetes in 2014.

● It is a software to deploy and manage containerized
applications while providing the best possible utilization of the
compute platform.

● It abstracts away the underlying infrastructure simplifying app
development and hardware management.

Kubernetes Benefits

● Application deployment simplification.

● Hardware system utilization improvement.

● Application automatic scaling.

● Application development simplification

● Fault Tolerance, High Availability and Self Healing

Kubernetes Architecture
● Control Plane (master)

– API server : point of entry to everything
– Scheduler : assigns nodes to components
– Controller Manager : cluster level functions
– Etcd : reliable key-value store

Image Source: Kubernetes in Action, Marko Luksa

● Worker nodes
– Kubelet : manages containers, talks to API
– Container Runtime : deploys containers
– Kube-proxy : load balances node traffic

Kubernetes objects
● Pods

– Represent a deployment unit composed by one or more tightly coupled containers sharing resources.
– Containers within a Pod can communicate with each other through localhost.
– All pods reside in a single flat, shared, network-address space, no NAT gateways exist between them.

Pods access each other on their unique IP address.
● Controllers

– Create and manage multiple pods handling replication, rollout, self-healing.
● Services

– Represent a single, constant point of entry to a group of pods providing the same service. Each service
has an IP address and port that never change while the service exists.

● Volumes
– Are directories accessible to the containers of a pod. Bound to pod lifecycle.

● Namespaces
– Provide an abstraction that enable the usage of multiple virtual clusters backed by the same physical

cluster.
● Nodes

– They can be VMs or physical machines, they provide the necessary services to run pods and are
managed by the master components.

Kubernetes CLI and example run

● kubectl is (almost) the only tool we'll need to talk to
Kubernetes

● It is a rich CLI tool around the Kubernetes API
● Everything you can do with kubectl, you can do directly with

the API

Kubernetes CLI
ubuntu@node1:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready master 6m v1.10.2
node2 Ready <none> 6m v1.10.2
node3 Ready <none> 6m v1.10.2
node4 Ready <none> 6m v1.10.2

ubuntu@node1:~$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
node1 Ready master 3m v1.10.2 <none> Ubuntu 16.04.4 LTS 4.4.0-1057-aws docker://18.3.1
node2 Ready <none> 3m v1.10.2 <none> Ubuntu 16.04.4 LTS 4.4.0-1057-aws docker://18.3.1
node3 Ready <none> 3m v1.10.2 <none> Ubuntu 16.04.4 LTS 4.4.0-1057-aws docker://18.3.1
node4 Ready <none> 3m v1.10.2 <none> Ubuntu 16.04.4 LTS 4.4.0-1057-aws docker://18.3.1

ubuntu@node1:~$ kubectl get nodes -o json | jq ".items[] | {name:.metadata.name} + .status.capacity"
{
 "name": "node1",
 "cpu": "2",
 "ephemeral-storage": "8065444Ki",
 "hugepages-2Mi": "0",
 "memory": "4045076Ki",
 "pods": "110"
}..

ubuntu@node1:~$ kubectl describe nodes node1
...

Kubernetes CLI
ubuntu@node1:~$ kubectl get namespaces
NAME STATUS AGE
default Active 5m
kube-public Active 5m
kube-system Active 5m
ubuntu@node1:~$ kubectl get pods
No resources found.
ubuntu@node1:~$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-node1 1/1 Running 0 5m
kube-system kube-apiserver-node1 1/1 Running 0 5m
kube-system kube-controller-manager-node1 1/1 Running 0 5m
kube-system kube-dns-86f4d74b45-lw27n 3/3 Running 0 5m
kube-system kube-proxy-5vbpz 1/1 Running 0 5m
kube-system kube-proxy-bjz6c 1/1 Running 0 5m
kube-system kube-proxy-p42pl 1/1 Running 0 5m
kube-system kube-proxy-q89h9 1/1 Running 0 5m
kube-system kube-scheduler-node1 1/1 Running 0 5m
kube-system weave-net-b7nd2 2/2 Running 1 5m
kube-system weave-net-cjpnx 2/2 Running 0 5m
kube-system weave-net-d7mjz 2/2 Running 0 5m
kube-system weave-net-ndjx2 2/2 Running 1 5m

Kubernetes Architecture deeper dive

Image Source Lucas Kardlstrom: https://speakerdeck.com/luxas/kubeadm-cluster-creation-internals-from-self-hosting-to-upgradability-and-ha

Kubernetes Architecture deeper dive
● Components communication and execution

– All components pass from API Server to communicate between them
– Only kubelet runs as regular system component and can run the other components as pods
– Components on worker nodes need to run on same node but components of master can be

split across multiple nodes
● Etcd

– Distributed, consistent key value store.
– Only the API-Server talks with etcd directly. All other components talk to etcd indirectly

through API-Server based on “Optimistic concurrency control”
– Uses Raft consensus algorithm to decide on the actual state based on quorum (majority).

● API-Server
– It provides a CRUD (Create, Read, Update, Delete) interface for querying and modifying the

cluster state over a RESTful API.
– Performs authentication, authorization and admission control through different plugins

before accessing state in etcd
– Watch mechanism to inform clients for modifications on objects.

Kubernetes Architecture deeper dive

● Controller manager
– It combines a multitude of controllers performing various reconciliation tasks.
– Each controller watches the API server for changes to resources (Deployments, Services,

and so on) and perform operations for each change
– It reconciles the actual state with the desired state (specified in the resource’s spec section)

● Scheduler
– It updates pods definition and through the API-server watch mechanism the kubelet is

notified to execute a pod.
– The default scheduling algorithm determines acceptable nodes and selects the best one for

the pod based on various configurable parameters.
– Multiple schedulers can run simultaneously in the cluster and a pod can use whichever is

more adapted.

Kubernetes Architecture deeper dive
● Kubelet

– Component responsible for everything running on a worker node
– Registers the node it’s running on by creating a Node resource in the API server.
– Continuously monitor the API server for Pods that have been scheduled to the node
– Start the pod’s containers using the configured container runtime

● Kube-proxy
– makes sure connections to the service IP and port end up at one of the pods backing

that service
– when a service is backed by more than one pod, the proxy performs load balancing

across those pods.
– Not real proxy but uses iptables rules to redirect packets handled in kernel space for

better performance
● Network Model

– Nodes and pods share one big flat IP network
– All nodes and pods can reach each other directly without NAT
– The network is usually set up by a Container Network Interface (CNI) plugin (more than 15 official

implementations exist)

Kubernetes Control Plane HA

Image Source: Kubernetes in Action, Marko Luksa

Setting up Kubernetes Cluster
● Various deployment options (non-exhaustive list)

– AKS on Azure, EKS or kops on AWS, GKE on Google Cloud
– Minikube on local machine
– Kubicorn or kubespray for hybrid multi-cloud solutions
– And plenty of commercial (open-source or not) options with different levels of offered

support RancherOS, RedHat Openshift, Suse, Ubuntu, etc
● For our tutorial we have used kubeadm on freshly installed VM

instances running Ubuntu 16.04 LTS deployed on AWS
– Install Docker
– Install Kubernetes packages
– Run kubeadm init on the master node
– Set up Weave (the overlay network)
– Run kubeadm join on the other nodes (with the token produced by kubeadm init)
– Copy the configuration file generated by kubeadm init

Kubernetes Features

● Automatic scheduling and allocation

● Automatic scaling

● Resources Monitoring

● Run everywhere

● Self Healing

● Storage Orchestration

● Automatic rollouts and rollbacks

Tutorial Contents
● The tutorial provides steps to get to know Kubernetes through various

exercises.
– We have explicitly abstracted the creation of the Kubernetes cluster to focus more on

interesting functionalities and exercises.

1) Launch VMs on AWS with your account and deploy a kubernetes
cluster on those VMs using a preconfigured script

2) Connect on your VMs to start playing with your Kubernetes cluster,
deploy a web dashboard and activate monitoring

3) Execute Big Data jobs based on Spark
4) Make use of multi-schedulers functionality, activate a new scheduling

policy and use it
5) Activate and use exclusive CPU Management policy
6) Enable and use pod auto-scaling functionality

Hands-On Time

● Connect on this link and follow the steps described there:

 https://github.com/RyaxTech/kube-tutorial

Kubernetes and HPC

Kubernetes and HPC

● Kubernetes has not been designed for HPC, hence
it will never be as optimized as Slurm, however:

● In the effort to enable support of Big Data and Artificial Intelligence
the software is being enhanced with functionalities that will
eventually interest HPC community.

● The convergence of HPC and Big Data will further motivate the
usage of Kubernetes in HPC.

Some interesting development efforts and functionalities already in place:
– CRI-O lightweight container runtime + rootless usage
– CPU Pinning and Isolation
– Device Plugins (GPUs, Infiniband, FPGA, etc)
– NUMA Management
– SR-IOV Networking plugin
– Spark 2.3.0 with Kubernetes scheduler instead of Yarn
– Pods Priorities and Preemption

Kubernetes and HPC
Some interesting development efforts and communities to follow:
– Container Runtime

● CRI-O – OCI stable runtime follow rootless
● KataContainers – OCI VM Containers
● Singularity – Syllabs seems to be working on support of Kubernetes
● Gvisor – Google sandboxed containers

– Kubernetes cluster federation – for offloading on hybrid clouds
– Kubeflow to make Machine Learning simple, portable and scalable

Some Kubernetes Resources

● KubeCon 2018 presentations with slides:

https://events.linuxfoundation.org/events/kubecon-cloudnativecon-europe-
2018/program/schedule/

● KubeCon 2018 videos:

https://www.youtube.com/channel/UCvqbFHwN-nwalWPjPUKpvTA/videos

This document is strictly confidential and intended solely for the recipients.

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

