
This document is strictly confidential and intended solely for the recipients.

Slurm Advanced Scheduling
(and how to improve various metrics)

Yiannis Georgiou - CTO Ryax Technologies

Resource and Job Management System Layers

This assignement involves three principal abstraction layers:
•Job Management: declaration of a job and demand of resources
 and job characteristics,
•Scheduling: matching of the jobs upon the resources,
•Resource Management : launching and placement of job instances
 upon the computation resources along with the job’s control of execution

The goal of a Resource and Job Management System (RJMS) is
to satisfy users' demands for computation and assign resources
to user jobs with an efficient manner.

SLURM Architecture

•Computing node Computer used for the execution of programs
•Partition Group of nodes into logical sets
•Job allocation of resources assigned to a user for some time
•Step sets of (possible parallel) tasks with a job

SLURM Terms

Architecture Design:

– one central controller daemon slurmctld

– A daemon upon each computing node slurmd

– One central daemon for the database controls slurmdbd

Principal Concepts:

– a general purpose plugin mechanism (for features such
as scheduling policies, process tracking, etc)

– the partitions which represent group of nodes with
specific characteristics (job limits, access controls, etc)

– one queue of pending work

– The job steps which are sets of (possibly parallel) tasks
within a job

SLURM Principles

Outline

1)Typical Job Scheduling and Allocation Mechanisms

2)Energy Reductions and Powercapping Techniques

3)Topology Aware Job Mapping

4)Techniques for scheduling experimentation

Outline

1)Typical Job Scheduling and Allocation Mechanisms

2)Energy Reductions and Powercapping Techniques

3)Topology Aware Job Mapping

4)Techniques for scheduling experimentation

Workload Submission

Job Allocation:
Network Topology

Internal Node Topology
Distribution of Tasks on Nodes

Distribution of Tasks on Sockets
Binding of Tasks

Single Job Dispatch

Job Scheduling:
FIFO

Prioritization
FairSharing

Backfill
Preemption

Job Execution

SLURM scheduling / allocation procedures

Workload Submission

Single Job Dispatch

Job Scheduling:
FIFO

Prioritization
FairSharing

Backfill
Preemption

SLURM scheduling

● SLURM supports various scheduling policies and optimization
techniques such as :

● Backfill
● Preemption
● Multi-factor priority
● Fairsharing

● Note: Techniques can be supported simultaneously

SLURM Scheduling

file:///media/gohn/usb/BULL_final_desktop/BULL/old_desktop/BULL/clients/TUDresden/figures/RJMS_scheduling_policies.pdf

Holes can be filled if previous jobs order is not changed

FIFO Scheduler Backfill Scheduler

Scheduling – Backfill

Sched/backfill
schedules lower priority jobs as long as they don’t delay a waiting higher priority job.

● Increases utilization of the cluster.
● Requires declaration of max execution time of lower priority jobs.

#slurm.conf file#slurm.conf file
SchedulerType=sched/backfillSchedulerType=sched/backfill
SchedulerParameters=defer,bf_interval=60SchedulerParameters=defer,bf_interval=60
FastSchedule=1FastSchedule=1

Scheduling Policies

Important parameter for backfill to take effect is the
Walltime of the job (Max time allowed for the job to be completed).

– Through command line option (--time=<Minutes>)
– Partitions or QOS can be declared with Walltime

parameter and jobs submitted to these partitions inherit
automatically those parameters.

•Configuration of scheduler backfill in slurm.conf
Scheduler Parameters= defer=#, bf_interval=#, bf_max_job_user=#,

 bf_resolution=#,bf_window=#,max_job_bf=#

Backfill Configuration

Metrics Improvements: System
Utilization and Jobs Waiting times

Preemption policy allows higher priority jobs to execute without
waiting upon the cluster resources by taking the place of the lower
priority jobs

Scheduling - Preemption

Preempt Modes
Cancel preempted job is cancelled.
Checkpoint preempted job is checkpointed if possible, or cancelled.
Gang enables time slicing of jobs on the same resource.
Requeue job is requeued as restarted at the beginning (only for sbatch).
Suspend job is suspended until the higher priority job ends (requires Gang).

#slurm.conf file#slurm.conf file
PreemptMode=SUSPENDPreemptMode=SUSPEND
PreemptType=preempt/qosPreemptType=preempt/qos

Preemption Policies

Metrics Improvements:
Respect SLAs

Partitions and QOS are used in SLURM to group nodes and jobs
characteristics

The use of Partitions and QOS (Quality of Services) entities in SLURM
is orthogonal:

– Partitions for grouping resources characteristics

– QOS for grouping limitations and priorities

Partition 1: 32 cores and high_memory

Partition 2: 32 cores and low_memory

Partition 3: 64 cores

QOS 1:
-High priority
-Higher limits

QOS 2:
-Low Priority
-Lower limits

Partitions and QOS

Partition Definitions
PartitionName=all Nodes=trek[0-3] Shared=NO Default=YES
PartitionName=P2 Nodes=trek[0-3] Shared=NO Priority=2 PreemptMode=CANCEL
PartitionName=P3 Nodes=trek[0-3] Shared=Exclusive Priority=3 PreemptMode=REQUEUE

>sacctmgr add qos name=lowprio priority=10 PreemptMode=Cancel GrpCPUs=10 MaxWall=60 MaxJobs=20>sacctmgr add qos name=lowprio priority=10 PreemptMode=Cancel GrpCPUs=10 MaxWall=60 MaxJobs=20
>sacctmgr add qos name=hiprio priority=100 Preempt=lowprio GrpCPUs=40 MaxWall=120 MaxJobs=50>sacctmgr add qos name=hiprio priority=100 Preempt=lowprio GrpCPUs=40 MaxWall=120 MaxJobs=50
>sacctmgr list qos>sacctmgr list qos
 Name Priority Preempt PreemptMode GrpCPUs MaxJobs MaxWall Name Priority Preempt PreemptMode GrpCPUs MaxJobs MaxWall
---------- ---------- ---------- ---------- ----------- -- ---------- -------- ----------- ------- ---------- ---------- ---------- ---------- ----------- -- ---------- -------- ----------- -------
 lowprio 10 cancel 10 20 60 lowprio 10 cancel 10 20 60
 hiprio 100 lowprio 40 50 120 hiprio 100 lowprio 40 50 120

Partitions Configuration:Partitions Configuration:
In slurm.conf fileIn slurm.conf file

QOS Configuration:QOS Configuration:
In DatabaseIn Database

Partitions and QOS Configuration

● Various factors can take part in the formula through the
MultiFactor plugin:

Job_priority =

(PriorityWeightAge) * (age_factor) +

(PriorityWeightFairshare) * (fair-share_factor) +

(PriorityWeightJobSize) * (job_size_factor) +

(PriorityWeightPartition) * (partition_factor)+
 SUM(TRES_weight_cpu * TRES_factor_cpu,

 TRES_weight_<type> * TRES_factor_<type>,...)

Multifactor Priority in SLURM

● User and Group accounts created in the database
● Inheritance between Groups and Users for all the different

characteristics (Fairshare factors, Max number of Jobs, Max
number of CPUs, etc)

● Job Priorities based on the CPU*Time utilization by default or
usage of TRESBillingWeights which tracks utilization of selected
Trackable Resources (CPU, Memory, GPUs, etc) of each user

Fairsharing in SLURM

Metrics Improvements: Minimize
Job Starvation, Balanced usage

Job Allocation:
Network Topology

Internal Node Topology
Distribution of Tasks on Nodes

Distribution of Tasks on Sockets
Binding of Tasks

Single Job Dispatch Job Execution

SLURM allocation

● topology/tree SLURM Topology aware plugin.
● Best-Fit selection of resources
● In fat-tree hierarchical topology: Bisection Bandwidth

Constraints need to be taken into account

#slurm.conf file#slurm.conf file
TopologyPlugin=topology/treeTopologyPlugin=topology/tree

Network Topology Aware Placement

topology.conf file needs to exist on all computing nodes
for network topology architecture description

topology.conf file# topology.conf file
SwitchName=Top Switches=TS1,TS2,TS3,TS4,TS5,TS6,...SwitchName=Top Switches=TS1,TS2,TS3,TS4,TS5,TS6,...

SwitchName=TS1 nodes=cluster[1-18]SwitchName=TS1 nodes=cluster[1-18]
SwitchName=TS2 nodes=cluster[19-37]SwitchName=TS2 nodes=cluster[19-37]
SwitchName=TS3 nodes=cluster[38-56]SwitchName=TS3 nodes=cluster[38-56]
SwitchName=TS4 nodes=cluster[57-75]SwitchName=TS4 nodes=cluster[57-75]
........

Configuration (topology.conf)

Metrics Improvements: Application
Performance, Job Execution Time

In the slurm.conf the topology/tree plugin may be activated by
the admins to allow job placement according to network
topology constraints

In the submission commands the users may use the
 --switches=<count>[@<max-time>] parameter to indicate how

many switches their job would be ideal to execute upon:
 When a tree topology is used, this defines the maximum

count of switches desired for the job allocation and optionally
the maximum time to wait for that number of switches.

Network Topology Aware Placement

SLURM uses four basic steps to manage CPU resources for a job/step:

 Step 1: Selection of Nodes
 Step 2: Allocation of CPUs from the selected Nodes
 Step 3: Distribution of Tasks to the selected Nodes
 Step 4: Optional Distribution and Binding of Tasks to CPUs within a Node

● SLURM provides a rich set of configuration and command line options to control each step
● Many options influence more than one step
● Interactions between options can be complex and difficult to predict
● Users may be constrained by Administrator's configuration choices

Internal node topology/CPUs allocation procedure

Metrics Improvements: Application
Performance, Job Execution Time

Configuration options in slurm.conf

 Nodename: Defines a node and its characteristics. This includes the layout of sockets,
cores, threads and the number of logical CPUs on the node.
 FastSchedule: Allows administrators to define “virtual” nodes with different layout of
sockets, cores and threads and logical CPUs than the physical nodes in the cluster.
 PartitionName: Defines a partition and its characteristics. This includes the set of
nodes in the partition.

Command line options on srun/salloc/sbatch commands

 --partition, --nodelist: Specifies the set of nodes from which the selection is made
 -N, --nodes: Specifies the minimum/maximum number of nodes to be selected
 -B, --sockets-per-node, --cores-per-socket, --threads-per-core: Limits node selection to
nodes with the specified characteristics

Options for Step 1: Selection of Nodes

Configuration options in slurm.conf:

 SelectType:
 SelectType=select/linear: Restricts allocation to whole nodes
 SelectType=select/cons_res: Allows allocation of individual sockets, cores
 or threads as consumable resources

 SelectTypeParameters: For select/cons_res, specifies the consumable resource
 type and default allocation method within nodes

Command line options on srun/salloc/sbatch:

 -n, --ntasks: Specifies the number of tasks. This may affect the number of CPUs
allocated to the job/step
 -c, --cpus-per-task: Specifies the number of CPUs per task. This may affect the
number of CPUs allocated to the job/step

Options for Step 2: Allocation of CPUs from Selected Nodes

Configuration options in slurm.conf:

 MaxTasksPerNode: Specifies maximum number of tasks per
node

Command Line options on srun/salloc/sbatch:

 -m, --distribution: Controls the order in which tasks are
distributed to nodes.

Options for Step 3: Distribution of Tasks to Nodes

Configuration options in slurm.conf:

 TaskPlugin:
 TaskPlugin=task/none: Disables this step.
 TaskPlugin=task/affinity: Enables task binding using the task affinity plugin.
 TaskPlugin=task/cgroup: Enables task binding using the new task cgroup
plugin.

 TaskPluginParam: For task/affinity, specifies the binding unit (sockets, cores or
threads) and binding method (sched_setaffinity or cpusets)

Command Line options on srun/salloc/sbatch:

 --cpu_bind: Controls many aspects of task affinity
 -m, --distribution: Controls the order in which tasks are distributed to allocated CPUs on a
node for binding

Options for Step 4: Optional Distribution & Binding

SLURM uses two default methods for allocating and
distributing individual CPUs from a set of resources

● block method: Consume all eligible CPUs consecutively
from a single resource before using the next resource in the set

● cyclic method: Consume eligible CPUs from each resource
in the set consecutively in a round-robin fashion

The following slides illustrate the default method used by
SLURM for each step.

Allocation & Distribution Methods

Different ways of selecting resources in SLURM:
● Cyclic method (Balance between nodes / Round Robin)
● Block method (Minimization of fragmentation)

● Cyclic

[bench@wardlaw0 ~]$ srun -n10 -N2 –exclusive /bin/hostname

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw66

wardlaw66

wardlaw66

wardlaw66

wardlaw66

● Block
[bench@wardlaw0 ~]$ srun -n10 -N2 /bin/hostname

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw66

Distribution of Resources

Generic Resources (GRES) are resources associated with a specific node that can
be allocated to jobs and steps. The most obvious example of GRES use would be
GPUs. GRES are identified by a specific name and use an optional plugin to
provide device-specific support.

SLURM supports no generic resourses in the default configuration. One must explicitly specify which
resources are to be managed in the slurm.conf configuration file. The configuration parameters of interest
are:

● GresTypes a comma delimited list of generic resources to be managed (e.g.
GresTypes=gpu,nic). This name may be that of an optional plugin providing additional control
over the resources.

● Gres the specific generic resource and their count associated with each node (e.g.
NodeName=linux[0-999] Gres=gpu:8,nic:2) specified on all nodes and SLURM will track the
assignment of each specific resource on each node. Otherwise SLURM will only track a count of
allocated resources rather than the state of each individual device file.

Generic Resources (Allocation of GPUs, ...)

For configuration the file gres.conf needs to exist on each compute node with gres resources

Configure support for our four GPUs
Name=gpu File=/dev/nvidia0 CPUs=0,1
Name=gpu File=/dev/nvidia1 CPUs=0,1
Name=gpu File=/dev/nvidia2 CPUs=2,3
Name=gpu File=/dev/nvidia3 CPUs=2,3

For job execution the –gres option has to be used for to salloc, sbatch, and srun.

--gres=<list>Specifies a comma delimited list of generic consumableresources. The format
of each entry on the list is"name[:count]".

Generic Resources (Allocation of GPUs, ...)

Outline

1)Typical Job Scheduling and Allocation Mechanisms

2)Energy Reductions and Powercapping Techniques

3)Topology Aware Job Mapping

4)Techniques for scheduling experimentation

Energy Reduction Techniques

● Framework for energy reductions through unutilized nodes
● Administrator configurable actions (hibernate, DVFS, power off, etc)
● Automatic 'wake up' when jobs arrive

 SuspendTimeSuspendTime: Idle time to activate energy reduction techniques. A negative number disables
power saving mode. The default value is -1 (disabled).
 SuspendRateSuspendRate: # nodes added per minute. A value of zero results in no limits being imposed.
The default value is 60. Use this to prevent rapid drops in power consumption.
 ResumeRate:ResumeRate: # nodes removed per minute. A value of zero results in no limits being imposed.
The default value is 300. Use this to prevent rapid increases in power consumption.
 SuspendProgram:SuspendProgram: Program to be executed to place nodes into power saving mode. The
program executes as SlurmUser (as configured in slurm.conf). The argument to the program will
be the names of nodes to be placed into power savings mode (using Slurm's hostlist expression
format).
 ResumeProgram:ResumeProgram: This program may use the scontrol show node command to insure that a
node has booted and the slurmd daemon started.
 SuspendTimeout, ResumeTimeout, SuspendExcNodes,SuspendExcParts,
 BatchStartTimeout

Energy reduction techniques Configuration

Energy Reduction Techniques

Georges Da Costa, Marcos Dias de Assuncao, Jean-Patrick Gelas, Yiannis Georgiou, Laurent Lefevre, Anne-Cecile
Orgerie, Jean-Marc Pierson, Olivier Richard and Amal Sayah
Multi-facet approach to reduce energy consumption in clouds and grids: The green-net framework.
(In proceedings of e-Energy 2010)

Energy Reduction Techniques

Metrics Improvements: Cluster
total energy consumption and TCO

Yiannis Georgiou
Contributions for Resource and Job Management
in High Performance Computing
(PhD Thesis 2010)

Energy Reduction Techniques

Issues :
●Multiple Reboots: Risks for node crashes or other
hardware components problems
●For production HPC clusters that have more than 85%
utilization the gain will be trivial
●TradeOffs: Jobs Waiting times increases significantly

Yiannis Georgiou
Contributions for Resource and Job Management
in High Performance Computing
(PhD Thesis 2010)

Power adaptive scheduling

▶ Provide centralized mechanism to dynamically adapt the instantaneous
power consumption of the whole platform

– Reducing the number of usable resources or running them with lower power
▶ Provide technique to plan in advance for future power adaptations

– In order to align upon dynamic energy provisioning and electricity prices

Power adaptive scheduling in Slurm v15.08 and later

The implementation appeared in 15.08 has the following characteristics:
▶Based upon layouts framework

– for internal representation of resources power consumption
– Only logical/static representation of power
– Fine granularity down to cores

▶Reductions take place through following techniques coordinated by the
scheduler:
– Letting Idle nodes
– Powering-off unused nodes (using default SLURM mechanism)
– Running nodes in lower CPU Frequencies (respecting –-cpu-freq allowed

frequencies)

Power adaptive scheduling – algorithm
▶ Implementation based upon new

layouts framework within SLURM
– Key/value store
– Map power consumption upon

components

▶ Power reductions take place through
following coordinated mechanisms:
– Letting Idle nodes
– Powering-off unused nodes
– Running nodes in lower CPU

Frequencies

Logic within the Powercapping Check
▶Calculate what power consumption the cluster would have if the job was executed
▶If higher than the allowed power budget, check if DVFS is allowed for the job (usage of

–-cpu-freq parameter with MIN and MAX)

– If yes then calculate what power consumption the cluster would have if the job was

executed with its different allowed CPU-Frequencies

– Try with the optimal CPU-Frequency which is the one that would allow all the idle

resources to become allocated
▶If neither the optimal nor the MIN allowed CPU-Frequency for the job results in lower

power consumption than the powercap then job pending else running

Power adaptive scheduling - Algorithm

Architecture of the Powercapping Check
▶Based upon the different nodes bitmaps states
▶Using Layouts for collecting and setting nodes and cores

power consumption (both get and set functions)
▶Each CPU Frequency is represented/considered to have its

own power consumption (based on measures or hardware
provider specifications)

Power adaptive scheduling – Architecture

[root@nd25 slurm]#cat /etc/layouts.d/power.conf

Entity=Cluster Type=Center CurrentSumPower=0 IdleSumWatts=0 MaxSumWatts=0 Enclosed=virtual[0-5039]

Entity=virtualcore[0-80639] Type=Core CurrentCorePower=0 IdleCoreWatts=7 MaxCoreWatts=22 CurrentCoreFreq=0
Cpufreq1Watts=12 Cpufreq2Watts=13 Cpufreq3Watts=15 Cpufreq4Watts=16 Cpufreq5Watts=17 Cpufreq6Watts=18
Cpufreq7Watts=20

Entity=virtual0 Type=Node CurrentPower=0 IdleWatts=0 MaxWatts=0 DownWatts=14 PowerSaveWatts=14 CoresCount=0
LastCore=15 Enclosed=virtualcore[0-15] Cpufreq1=1200000 Cpufreq2=1400000 Cpufreq3=1600000 Cpufreq4=1800000
Cpufreq5=2000000 Cpufreq6=2200000 Cpufreq7=2400000 NumFreqChoices=7

Entity=virtual1 Type=...

Power adaptive scheduling – Configuration

44

[root@nd25 slurm]#cat /etc/slurm.conf |grep power
Layouts=power/cpufreq

▶Set parameter within slurm.conf

▶Set new /etc/layouts.d/power.conf file

Power adaptive scheduling

Yiannis Georgiou, David Glesser, Denis Trystram
Adaptive Resource and Job Management for limited power consumption
In proceedings of IPDPS-HPPAC 2015

System utilization in terms of cores (top) and power (bottom) for MIX policy
during a 24 hours workload of Curie system with a powercap reservation (hatched area)
of 1 hour of 40% of total power. Cores switched-off represented by a dark-grey hatched area.

Metrics Improvements: TCO

Enhanced Power adaptive scheduling

▶ The E-PAS algorithm is capable of efficiently improving the system resource
utilization and significantly reducing job waiting times by redistributing the
system power under strict powercap regime.

▶ E-PAS extends the previously conceived PAS algorithm by performing power
aware optimizations on the basis of real power monitoring data and has been
evaluated on both Intel and ARM architectures.

Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser, Michael Ott:
A Novel Approach for Job Scheduling Optimizations Under Power Cap for ARM and Intel HPC Systems.
In proceedings of HiPC 2017: 142-151

Enhanced Power adaptive scheduling

Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser, Michael Ott:
A Novel Approach for Job Scheduling Optimizations Under Power Cap for ARM and Intel HPC Systems.
In proceedings of HiPC 2017: 142-151

Enhanced Power adaptive scheduling

Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser, Michael Ott:
A Novel Approach for Job Scheduling Optimizations Under Power Cap for ARM and Intel HPC Systems.
In proceedings of HiPC 2017: 142-151

Enhanced Power adaptive scheduling

Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser, Michael Ott:
A Novel Approach for Job Scheduling Optimizations Under Power Cap for ARM and Intel HPC Systems.
In proceedings of HiPC 2017: 142-151

Enhanced Power adaptive scheduling

Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser, Michael Ott:
A Novel Approach for Job Scheduling Optimizations Under Power Cap for ARM and Intel HPC Systems.
In proceedings of HiPC 2017: 142-151 Metrics Improvements: TCO with

acceptable system utilization

Outline

1)Typical Job Scheduling and Allocation Mechanisms

2)Energy Reductions and Powercapping Techniques

3)Topology Aware Job Mapping

4)Techniques for scheduling experimentation

Topology-aware task placement

Improve the way the application exchanges its data:
• based on the expression of bytes/messages exchanged by the
application processes (communication pattern)
• match this pattern to the available resources of the underlying architecture
by placing processes that communicate more to cores that are closer to
each other

Process Placement with Treematch

● Not all the processes exchange the same amount of data
● The speed of the communications, and hence the performance of the application

depends on the way processes are mapped to resources.

● Communication matrix + Tree Topology = Process permutation

http://treematch.gforge.inria.fr/

Topology-aware task placement

● Assume the following topology on a small cluster

s1

n0

s2

s0

n1 n2 n3 n4 n5

0 1 2 3 4 5 6 7 8 9 10 11

Topology-aware task placement

● Suppose that one job will allocate the 2 CPUs of node n5

s1

n0

s2

s0

n1 n2 n3 n4 n5

0 1 2 3 4 5 6 7 8 9 10 11

Topology-aware task placement
● And another job demanding 8 CPUs of 4 nodes with the following communication

matrix is submitted. Default Slurm will result into:
Proc. 0-1 2-3 4-5 6-7

0-1 0 20 0 2000

2-3 20 0 1000 0

4-5 0 1000 0 10

6-7 2000 0 10 0

s1

n0

s2

s0

n1 n2 n3 n4 n5

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 Default Slurm

Topology-aware task placement
● And another job demanding 8 CPUs of 4 nodes with the following communication

matrix is submitted. Slurm then TM will result into:
Proc. 0-1 2-3 4-5 6-7

0-1 0 20 0 2000

2-3 20 0 1000 0

4-5 0 1000 0 10

6-7 2000 0 10 0

s
1

n0

s
2

s
0

n1 n2 n3 n4 n5

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7
0 1 6 7 2 3 4 5

Default Slurm
Slurm then Treematch

Topology-aware task placement
● And another job demanding 8 CPUs of 4 nodes with the following

communication matrix is submitted. TM within Slurm will result into:
Proc. 0-1 2-3 4-5 6-7

0-1 0 20 0 2000

2-3 20 0 1000 0

4-5 0 1000 0 10

6-7 2000 0 10 0

s
1

n0

s
2

s
0

n1 n2 n3 n4 n5

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
0 1 6 7 2 3 4 5

Default Slurm
Slurm then Treematch

0 1 6 7 2 3 4 5 Treematch within Slurm

Architecture Treematch within Slurm
● Implemented a new selection option for the select/cons_res plugin of Slurm

– The communication matrix is provided at job submission time through a new
distribution option

– The topology as needed by Treematch is provided by a new parameter in the
configuration file

– The availability of resources is retrieved through the node and core bitmaps data
structures

• Slurm local CPU ids are translated to Treematch CPU ids in order to calculate the process
permutation.

• The selected list of CPUs as done by Treematch is then translated back to bitmaps for Slurm to use

 srun –m TREEMATCH=/comm/matrix/path

#slurm.conf file
TreematchTopologyFile=/topology/file/path

Metrics Improvements: Application
Performance and Job Execution Time

Treematch with Slurm Integration

● Treematch-Slurm integration done by Adele Villiermet in the
context of her PhD

● Validation and evaluation of this new functionality showed
positive and promising results. This work has been published in:

- Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, Adèle Villiermet:

 Topology-aware job mapping. IJHPCA 32(1): 14-27 (2018)

Outline

1)Typical Job Scheduling and Allocation Mechanisms

2)Energy Reductions and Powercapping Techniques

3)Topology Aware Job Mapping

4)Techniques for scheduling experimentation

Experimenting with Scheduling Optimizations in Slurm

▶ Make use of real or synthetic workloads and
▶ either use the emulation technique of Slurm as used in [1]
▶ or use simulation techniques such as the one studied in [2] with Batsim and SimGrid.

However developments are needed to integrate Slurm scheduler with Batsim

[2] Pierre-François Dutot, Michael Mercier, Millian Poquet, Olivier Richard:
 Batsim: A Realistic Language-Independent Resources and Jobs Management Systems Simulator.
 In proceedings of JSSPP 2016: 178-197

[1] Yiannis Georgiou, Matthieu Hautreux:
 Evaluating Scalability and Efficiency of the Resource and Job Management System on Large HPC Clusters.
 In proceedings of JSSPP 2012: 134-156

Activating emulation technique within SLURM

Multiple slurmd technique can be used to experiment with scheduling
without using a real-scale cluster:

 - the idea is that multiple slurmd deamons use the same IP address but different ports

 - all controller side plugins and mechanisms will function

 - ideal for scheduling, internal communications and scalability experiments

1. You need to run ./configure with –enable-multiple-slurmd parameter
(make, make install, etc)
2. Perform the necessary changes in the slurm.conf file similarly the
following example:

Activating emulation technique within SLURM

SlurmdPidFile=/usr/local/slurm-test/var/run/slurmd-%n.pid
SlurmdSpoolDir=/tmp/slurm-%n
SlurmdLogFile=/tmp/slurmd-%n.log
FastSchedule=2
PartitionName=exclusive Nodes=virtual[0-40] Default=YES MaxTime=INFINITE State=UP Priority=10 Shared=EXCLUSIVE
NodeName=DEFAULT Sockets=2 CoresPerSocket=8 ThreadsPerCore=1 RealMemory=21384 State=IDLE
NodeName=virtual0 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17000.

NodeName=virtual1 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17001
NodeName=virtual2 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17002
…...

3. You can start the slurmd deamons with:
– Either through a script such as:

 for i in {0..40}; do slurmd -N virtual$i; done
– Or by exporting: MULTIPLE_SLURMD="$(grep NodeHostName=$

(hostname) /etc/slurm.conf | cut -d ' ' -f 1 | cut -d'=' -f 2)"
on /etc/sysconfig/slurm and starting with /etc/init.d/slurm

Examples of performance evaluation with emulation

4096 emulated nodes
upon 400 physical nodes

Yiannis Georgiou, Matthieu Hautreux:
Evaluating Scalability and Efficiency of the Resource and Job Management System on Large HPC Clusters.
In proceedings of JSSPP 2012: 134-156

Examples of performance evaluation with emulation

16384 emulated nodes
upon 400 physical nodes

Yiannis Georgiou, Matthieu Hautreux:
Evaluating Scalability and Efficiency of the Resource and Job Management System on Large HPC Clusters.
In proceedings of JSSPP 2012: 134-156

This document is strictly confidential and intended solely for the recipients.

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

